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ABSTRACT

The rapid digitization of healthcare systems has intensified concerns regarding long-term data
privacy, dynamic access control, and cryptographic sustainability of Electronic Health Records
(EHRs). Existing EHR platforms largely rely on static access policies and classical
cryptographic mechanisms, rendering them vulnerable to overexposure of sensitive data and
future quantum computing threats. To address these limitations, this paper proposes a
Quantum-Resilient Context-Aware Privacy-Preserving EHR Architecture that integrates field-
level privacy intelligence, adaptive policy enforcement, and post-quantum cryptographic
protection within a modular and interoperable framework. The proposed architecture employs
FHIR-compliant data ingestion to ensure semantic interoperability across heterogeneous
clinical systems, followed by a novel context-awareness layer that dynamically infers access
conditions based on user roles, temporal factors, location, and clinical severity. A fine-grained
privacy classification engine assigns sensitivity levels at the attribute level, enabling selective
application of differential privacy for secondary data usage and attribute-based encryption for
highly sensitive clinical fields. To ensure long-term confidentiality, lattice-based post-quantum
cryptographic primitives are incorporated, supported by cryptographic agility mechanisms that
allow seamless algorithm migration without system re-engineering. Blockchain-based audit
logging further enhances transparency, integrity, and regulatory compliance. The system is
evaluated using realistic clinical datasets, including MIMIC-III, MIMIC-1V, synthetic FHIR
datasets, and simulated hospital workflows. Comprehensive evaluations covering privacy
protection, utility preservation, performance efficiency, sustainability, and comparative
benchmarking demonstrate that the proposed framework significantly reduces re-identification
risk while maintaining high clinical utility and acceptable system latency. Long-term
projections confirm robustness against quantum adversaries over a 30-50-year horizon. The
results establish the proposed architecture as a scalable, future-proof solution for secure and
privacy-aware healthcare data management.

Keywords: Electronic Health Records, Privacy-Preserving Systems, Context-Aware Access
Control, Post-Quantum Cryptography, Attribute-Based Encryption, Differential Privacy,
Blockchain-Enabled Auditing.
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1. INTRODUCTION
The proliferation of digital health records, especially through smart home healthcare
and IoT devices, has revolutionized patient care by enabling remote monitoring and

management of health data, yet it simultaneously introduces profound security and privacy
challenges [1]. This digital transformation necessitates robust mechanisms to protect sensitive
patient information from unauthorized access, cyber threats, and potential breaches,
particularly as healthcare data often traverses open networks like the internet [2]. Moreover,
the impending threat of quantum computing poses a significant risk to current cryptographic
standards, potentially compromising the long-term confidentiality and integrity of electronic
health records [3]. Thus, developing quantum-resistant cryptographic solutions is paramount
to securing these systems against future computational advancements [4]. This work addresses
these challenges by proposing a future-proof, privacy-adaptive EHR platform designed for
long-term medical data retention, incorporating quantum-resilient data storage and dynamic
privacy policies to ensure compliance with evolving hospital workflows and cryptographic
landscapes [1], [2]. Specifically, this platform integrates advanced cryptographic techniques
and dynamic access controls to mitigate risks associated with both current vulnerabilities and
future quantum threats [2]. This system aims to overcome current EHR limitations, such as
coarse-grained access control and static privacy policies, by implementing field-level privacy
controls and context-aware adaptation [5]. This includes integrating technologies such as
Differential Privacy, Attribute-Based Encryption, and Post-Quantum Cryptography to secure
diverse healthcare data like patient histories, medications, and lab results [2]. The proposed
architecture aims to achieve granular privacy control at the field level, moving beyond
traditional record-level encryption to enable context-aware privacy adaptation suitable for
dynamic clinical environments [6], [7]. This advanced framework facilitates real-time clinical
usability and quantifies measurable privacy-utility-performance trade-offs, ensuring that
security enhancements do not impede operational efficiency.

2. BACKGROUND AND MOTIVATION

The digitization of sensitive health information, while offering significant benefits such
as improved accessibility and streamlined data management, has simultaneously introduced
critical concerns regarding data security and patient privacy [8]. The vulnerability of
conventional cryptographic methods to quantum computing necessitates the development of
quantum-resistant security measures to safeguard Electronic Health Records against future
attacks [9]. This includes integrating Post-Quantum Cryptography algorithms, particularly
lattice-based primitives like Kyber, to ensure data confidentiality and immutability for patient
records in a post-quantum era [10]. Furthermore, the increasing sophistication of cyber threats
and the rising incidence of data breaches in healthcare underscore the urgent need for more
resilient security architectures that can protect sensitive patient data from unauthorized access
and manipulation [11]. The fundamental challenge lies in establishing a decentralized, time-
aware, and auditable access control framework that can dynamically manage permissions while
maintaining cryptographic security guarantees, specifically enabling selective decryption of
EHRs based on verified entity identities and enforcing temporal access constraints
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automatically [12]. This comprehensive approach addresses the limitations of existing EHR
systems, which often suffer from coarse-grained access controls and static privacy policies that
are ill-suited for the dynamic and sensitive nature of clinical data [13]. While significant strides
have been made in securing EHRs through various cryptographic techniques, many existing
solutions face limitations concerning scalability, computational overhead, and centralized
vulnerabilities, particularly within large-scale healthcare deployments [12]. For instance,
current blockchain-based approaches for EHR security, while promising for data integrity and
auditability, often struggle with the practicalities of integrating with end-to-end clinical
workflows and ensuring robust cryptographic lifecycle management [2], [14]. Furthermore,
prevalent Attribute-Based Encryption implementations, while offering fine-grained access
control, frequently introduce substantial computational costs and central points of failure
through Trusted Authorities, hindering their adoption in distributed healthcare environments
[12]. Moreover, the inherent complexity of managing cryptographic keys in a post-quantum
world poses additional challenges for healthcare blockchain networks, necessitating the
development of robust and adaptable key management strategies [2].

3. SYSTEM OBJECTIVES

This challenge becomes even more pronounced when considering the need for dynamic
revocation schemes and identity-centric access frameworks that can efficiently handle frequent
changes in access permissions and integrate seamlessly with existing healthcare infrastructures
[12]. Consequently, researchers have begun exploring alternative cryptographic primitives and
architectural designs to overcome these limitations, focusing on identity-based encryption and
context-aware access control mechanisms to provide more efficient and granular control over
sensitive health data without compromising security or usability [12], [15]. Specifically, recent
advancements highlight the potential of integrating blockchain with attribute-based encryption
to enhance data security, privacy, and interoperability in EHR systems, addressing common
issues of inconsistent data handling and limited access across facilities [8]. These hybrid
approaches leverage the decentralized and immutable nature of blockchain for secure
transaction logging and data integrity, while ABE facilitates fine-grained access control based
on user attributes and roles [11], [16], [17]. Despite these advancements, many contemporary
EHR platforms continue to grapple with fundamental issues such as coarse-grained access
control, where access is granted to an entire record rather than specific fields, leading to
overexposure of sensitive patient information [18]. Such limitations are exacerbated by static
privacy policies that fail to adapt to the fluid nature of clinical workflows, alongside the long-
term cryptographic fragility of current encryption standards, which are susceptible to future
quantum computing attacks [11], [16]. This highlights the critical need for a new generation of
EHR platforms that offer quantum-resilient data storage and adaptive privacy controls to ensure
sustainability and compliance over decades [2]. Moreover, the development of efficient
attribute-based revocation mechanisms for smart contracts is crucial for maintaining the
integrity and privacy of EHRs, as current methods are often computationally expensive and
lack attribute-based revocation capabilities [19].
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4. PROPOSED SYSTEM ARCHITECTURE

The proposed system architecture is designed to address these challenges through a
multi-layered approach that integrates advanced cryptographic techniques with dynamic policy
enforcement and real-time context awareness. This conceptual framework outlines a robust,
future-proof EHR platform that leverages quantum-resistant cryptography, fine-grained access
controls, and dynamic privacy policies to ensure secure and compliant management of sensitive
medical data over extended periods. This architecture aims to move beyond traditional record-
level encryption by enabling field-level privacy control, allowing for granular management of
individual data points within an EHR. Furthermore, it seeks to enable context-aware privacy
adaptation, adjusting access permissions dynamically based on clinical scenarios such as OPD,
ICU, or emergency situations, which is crucial for maintaining both privacy and operational
efficiency [11], [20]. Such a system would ensure quantum-resilient long-term data
confidentiality while maintaining real-time clinical usability with acceptable latency by
providing measurable privacy—utility—performance trade-offs [20]. This necessitates a novel
system architecture capable of dynamically classifying data privacy needs, adapting access
controls based on real-time contextual information, and applying quantum-resilient encryption
at a granular level. Specifically, the Privacy Classification layer, a novel component of this
architecture, will categorize the sensitivity of individual data fields within EHRs, enabling the
application of distinct privacy-preserving mechanisms based on predefined policies and
contextual inputs. This layer is critical for mapping data elements to appropriate privacy
controls, ranging from anonymization for research purposes to highly restricted access for
sensitive clinical notes [2]. This dynamic classification allows the system to implement fine-
grained access policies, ensuring that sensitive information is protected while still enabling
necessary data access for various stakeholders [21]. This approach facilitates a nuanced balance
between data utility and privacy, ensuring compliance with evolving regulatory landscapes and
clinical requirements [11].

4.1 Data Ingestion Layer

The Data Ingestion Layer is responsible for securely integrating various healthcare data
sources into the EHR platform, utilizing the FHIR standard to ensure interoperability and
semantic consistency across diverse data types [13]. It handles FHIR-based EHR input,
encompassing patient demographics, observations, medications, and imaging metadata,
alongside real-time hospital data streams from sources like Outpatient Departments, Intensive
Care Units, and laboratories [22]. This layer ensures that all incoming data is standardized and
tagged with essential metadata to inform subsequent privacy classification and context-aware
processing [23]. This foundational step is crucial for enabling the downstream layers to
accurately apply dynamic access controls and quantum-resilient encryption strategies, thereby
fortifying the overall security posture of the EHR platform.

International Journal of Cognitive Computing in Engineering 6 (2) (2025) 72



¢
Ke A_l INTERNATIONAL JOURNAL OF COGNITIVE
COMPUTING IN ENGINEERING

ISSN: 2666-3074

4.2 Context Awareness Layer

This layer, a novel component of the proposed architecture, dynamically assesses the
operational environment to determine the appropriate access context, such as clinical,
administrative, or research/analytics [24]. This contextual determination is derived from a
composite analysis of user roles, temporal factors, geographical location, and the patient's
current medical status, distinguishing between critical and non-critical conditions. This
dynamic assessment enables the system to adapt privacy policies and access controls in real-
time, moving beyond static, predefined rules to ensure that data access aligns precisely with
the immediate operational requirements [8], [22]. By integrating these contextual elements, the
Context Awareness Layer facilitates the enforcement of highly granular, situation-dependent
access policies, thereby enhancing both security and efficiency within the healthcare ecosystem
[25]. This dynamic adaptability ensures compliance with stringent data protection regulations
such as GDPR and HIPAA, while simultaneously optimizing clinical workflows by preventing
unnecessary data exposure and facilitating timely access to critical patient information [26],
[27].

4.3 Privacy Classification Engine

The Privacy Classification Engine is tasked with categorizing the sensitivity level of
each data field within the EHR, based on predefined policies and contextual inputs from the
Context Awareness Layer, to determine the appropriate privacy-preserving mechanisms. This
engine is vital for orchestrating field-level encryption, differential privacy applications for
secondary use, and attribute-based access controls, ensuring that data exposure is minimized
while maintaining utility. It leverages advanced machine learning algorithms to identify and
classify sensitive data elements, thereby enabling automated application of specific privacy-
enhancing technologies. This granular classification is crucial for balancing data utility with
privacy, allowing for selective protection of highly sensitive information while enabling
broader access to less sensitive data for analytical and operational purposes [28].
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Fig. 1 Quantum-Resilient Context Aware Privacy-Preserving EHR Architecture

4.4 Cryptographic Enforcement Layer

This layer is responsible for implementing the quantum-resilient cryptographic
primitives and attribute-based encryption schemes to enforce the privacy policies determined
by the Privacy Classification Engine and Context Awareness Layer [16]. It integrates post-
quantum cryptography algorithms, such as lattice-based schemes like Kyber, to protect data
against future quantum computing threats, alongside Attribute-Based Encryption for fine-
grained, policy-driven access control [12], [29]. The layer also manages the secure generation,
distribution, and revocation of cryptographic keys, incorporating mechanisms for time-bound
key issuance and dynamic policy updates to adapt to evolving access requirements [11], [12].
Furthermore, proxy-assisted re-encryption mechanisms are incorporated to facilitate efficient
revocation of access and dynamic policy changes without requiring full re-keying of the entire
dataset or user base [11].

4.5 Secure Storage Layer
This layer ensures the persistent, tamper-resistant, and confidential storage of EHR
data, integrating distributed storage solutions like IPFS with cryptographic protections to
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maintain data integrity and availability [12]. It employs homomorphic encryption for secure
computation on encrypted data, enabling privacy-preserving analytics without decrypting
sensitive information [8]. Additionally, a hybrid storage approach is utilized, where actual
medical data is stored off-chain in systems like IPFS, while cryptographic hashes and access
policies are recorded on a blockchain for immutable audit trails and enhanced data integrity
[11], [30]. This architecture guarantees the immutability of access logs and policies, preventing
unauthorized alterations while ensuring data privacy through advanced encryption techniques
[31]. This segregation of data storage from metadata ensures both scalability and robust data
governance, particularly for sensitive health records [17], [32].

Algorithm 1: Quantum-Resilient Context-Aware Privacy-Preserving EHR Framework

Notation and Definitions
Let
o P ={p1,p2 -, Pn}: Set of patients
e U ={uy,uy, ..., uy}: Set of users (clinicians, researchers, admins)
e R ={ropp,Ticu, Teme, Tres}: Clinical roles
e D =1{d,;,d,,...,d;}: EHR records
o d; = {fu, fiz» -, fij}: Fields in an EHR record
e C: Context vector
e & Sensitivity level
o P.: Differential privacy mechanism with budget ¢
o Epgc: Post-quantum encryption function
o &,pg: Attribute-based encryption function
e B: Blockchain ledger
e L:Audit log
e T:Time horizon (years), T € [30,50]

e FHIR-compliant EHR data streams: Dgy g <
{MIMIC-IILMIMIC-IV,Synthetic FHIR}
e User attributes 4,
o Contextual parameters C = {r,t, [, s}
o roler, time t, location [, clinical severity s

Section I: Data Ingestion and Standardization

FHIR .

1. Parse incoming EHR data into standardized FHIR resources
2. Attach metadata: d « d U {timestamp, source, clinical_unit}
3. Store normalized records in hybrid storage buftfer
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Section II: Context Awareness Computation
Cu = O(1, ty, Ly, Sp)
Where ®(+)is a context inference function.
Emergency, Sp = Terit
C, =3 Clinical, 7, € {OPD,ICU}
Secondary, 1, = Research
Section III: Field-Level Privacy Classification
Vfij € di: S(fij) = Y(fij, Cu)
Where W(-)assigns sensitivity:
S(fij) € {Low, Medium, High}
High — clinical notes, genomics
e Medium — vitals, medications
e Low — demographics, aggregates

Section IV: Privacy Mechanism Selection

Eape(fij)) § =High

ViijiM(fiy)) =3 P(fij), & = Medium

Plaintext, S = Low

Where:
€ €[0.1,1.0]
is chosen to satisfy:
Utility > § ARisk < p

Section V: Quantum-Resilient Cryptographic Enforcement
Cij = ‘SPQC(M(fij)' K)
e K,: time-bound cryptographic key
e Hybrid encryption used for backward compatibility:
5Hybrid = Epps D gPQC

Section VI: Secure Storage and Blockchain Anchoring
Store(C;j) - IPFS
Hash(C;;) - B
Blockchain record:
B « {hash,policyID, timestamp}
Ensures:
e Immutability
e Non-repudiation
o Regulatory traceability
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Section VII: Context-Aware Access Enforcement
Upon access request q(u, d;):

Access(u, fij) = {

Emergency override condition:

Allow, Policy(u,C,,S) = True
Deny, otherwise

C, = Emergency = Temporary_Access
Section VIII: Audit and Compliance Logging
Vaccess: L < {u, f;j, t, decision}
Audit hashes anchored to blockchain:

Hash(L) - B

Section IX: Evaluation Metrics Computation

Privacy
RiSkreID = Pr (d - pl)
Utility
Accurac
Utility = Yor
AccuracyOriginal
Performance
Latency = Tonc + Tpoticy + Tquery

Sustainability

. 256, PQC
Security(T) = {l 0, Clasgical
Section X: Comparative Analysis
For each baseline b € B,:

Gain = MetriCpyroposea — Metricy,
Statistical validation:
p-value < 0.05A 5 =0.8

Termination
Return:
e Secure EHR access
e Audit-verified operations
e Quantified privacy—utility—performance—longevity outcomes

Output
e Secure, context-aware, privacy-preserved EHR access
e Immutable audit records
e Quantified privacy, utility, performance, and sustainability metrics
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4.6 Audit and Compliance Layer

This layer provides comprehensive logging and monitoring capabilities, enabling real-
time auditing of all data access and modification events to ensure regulatory compliance and
accountability. It integrates anomaly detection systems to flag suspicious activities and
generates detailed audit trails, which are crucial for forensic analysis and demonstrating
adherence to privacy regulations like HIPAA and GDPR. This layer further leverages
cryptographic proofs and smart contracts to ensure the immutability and non-repudiation of
digital agreements and data processing procedures, thereby bolstering the system's
cybersecurity posture [33]. The integration of blockchain technology within this layer
facilitates immutable record-keeping of all transactions and access events, thereby enhancing
transparency and trust in data governance [11], [27]. Such a robust audit trail, underpinned by
blockchain, enables efficient incident response and facilitates compliance verification for
regulatory bodies [11]. Moreover, the Audit and Compliance Layer incorporates automated
policy enforcement mechanisms, actively comparing system operations against predefined
regulatory frameworks to ensure continuous adherence and mitigate potential breaches [12].

4.7 Implementation Plan

This section presents a structured, stage-wise implementation strategy for the proposed
smart privacy-preserving Electronic Health Record (EHR) platform integrated with quantum-
resilient cryptographic mechanisms. The implementation begins with the establishment of a
realistic clinical computing environment and the preparation of representative datasets,
followed by the progressive development of privacy-aware components and cryptographic
modules. Subsequent stages focus on deploying and validating post-quantum security
primitives and fine-grained access control mechanisms under simulated hospital workflows.
Finally, a comprehensive evaluation is conducted to analyze privacy, performance, and utility
trade-offs, ensuring that enhanced privacy guarantees do not adversely affect real-time clinical
usability or data accessibility across diverse healthcare scenarios.

5. EXPERIMENTAL SETUP AND DATASET SELECTION

A secure and scalable computing environment is established to mirror hospital-grade
infrastructure. The system is deployed on Linux-based servers configured to emulate on-
premise hospital networks, ensuring low-latency clinical access. The software stack includes
Python and Java for backend services and FHIR server implementation, while PostgreSQL and
MongoDB are used to manage structured and semi-structured EHR data, respectively. A hybrid
cloud—on-premise architecture is adopted to support real-time clinical operations locally while
enabling secure long-term archival and backup in the cloud. This environment allows
controlled experimentation under varying workloads, concurrent user access, and security
configurations, while maintaining strict isolation and compliance with healthcare data
protection requirements [34]. In addition, a blockchain-enabled cloud EHR component is
integrated for defining access control policies and recording compliance attestations in an
immutable manner, thereby supporting regulatory transparency and accountability [12], [31].
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Robust anonymization and pseudonymization mechanisms are incorporated during
development and testing to ensure adherence to data protection regulations from the earliest
stages [15].

5.1 Dataset Description

The initial phase involves the selection and preparation of realistic and widely accepted
healthcare datasets to ensure the proposed system’s applicability to real-world clinical
environments. To achieve this, large-scale, de-identified clinical datasets such as MIMIC-III
and MIMIC-IV are employed, as they contain heterogeneous EHR data encompassing
intensive care unit (ICU) records, laboratory results, clinical notes, and medication information.
These datasets enable rigorous evaluation of privacy preservation and access control
mechanisms across complex and sensitive clinical contexts. In addition, synthetic patient
datasets conforming to the FHIR standard are generated to simulate controlled clinical
scenarios and interoperability testing without exposing real patient identities. To further
emulate operational hospital conditions, simulated hospital workflow logs representing OPD
visits, ICU admissions, emergency interventions, and routine follow-ups are incorporated to
model realistic data access patterns and temporal dynamics.

5.2 FHIR-Based EHR Platform Development

This phase focuses on the development of a core EHR platform compliant with the
FHIR interoperability standard, enabling seamless integration with heterogeneous clinical
systems and external healthcare applications. Key FHIR resources, including Patient,
Encounter, Observation, Medication Request, and imaging-related metadata, are implemented
to ensure standardized data representation and exchange across departments and institutions
[11]. The platform supports real-time ingestion of clinical data streams originating from OPD
units, ICUs, diagnostic laboratories, and pharmacy systems, ensuring that patient records
remain current and clinically relevant. To enhance data integrity and traceability, blockchain-
based mechanisms are integrated to maintain immutable audit trails for data access and
modification events, extending existing secure data management approaches [31], [35]. This
integration enables transparent monitoring of access activities and supports compliance
verification without disrupting routine clinical workflows.

5.3 Field-Level Privacy Classification

In this phase, a fine-grained privacy classification mechanism is developed to
categorize individual EHR attributes according to their sensitivity and contextual relevance.
Rather than treating an EHR as a monolithic entity, each data field is assigned a sensitivity
label that guides the application of appropriate privacy-preserving techniques. Highly sensitive
attributes, such as diagnosis notes or genetic information, are protected using attribute-based
encryption, while aggregated or secondary-use data are safeguarded through differential
privacy mechanisms [36]. This field-level classification enables dynamic adaptation of privacy
policies based on clinical context, such as emergency care, routine outpatient visits, or research
access [31]. By allowing access policies to evolve with operational conditions, the system
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achieves a balanced trade-off between patient confidentiality and clinical necessity. Smart
contracts are employed to enforce access permissions, ensuring that cryptographic access rights
are aligned with user roles and contextual constraints [27], [37].

5.4 Context-Aware Privacy Policy Engine

Building upon the field-level classification framework, the context-aware privacy
policy engine dynamically enforces access decisions by integrating user attributes, real-time
operational context, and risk assessment metrics. This engine is designed to respond instantly
to changing clinical scenarios, such as emergency admissions, by temporarily adjusting access
permissions to ensure timely availability of critical patient information [8]. At the same time,
it enforces stricter privacy controls for non-critical or secondary data access, thereby preserving
confidentiality [12]. Machine learning—based risk prediction models are incorporated to
anticipate potential privacy threats arising from evolving workflows and usage patterns,
enabling proactive policy adaptation [38]. This approach extends conventional Role-Based
Access Control by combining Attribute-Based and Context-Aware Access Control models,
enabling highly granular decisions based on role, data sensitivity, temporal constraints,
location, and device characteristics [23].

5.5 Cryptographic Integration

This phase integrates quantum-resilient cryptographic primitives into the EHR platform
to protect long-term medical data against future quantum computing threats [11]. Lattice-based
post-quantum encryption schemes are deployed to secure data at rest and key exchange
processes, ensuring confidentiality over the anticipated 30-50 year lifespan of healthcare
records. To maintain interoperability with existing systems, hybrid cryptographic approaches
combining classical and post-quantum algorithms are employed, enabling gradual migration
while preserving forward secrecy against quantum adversaries [5], [39].

5.2 System Deployment and Testing

The fully integrated system is deployed in a simulated hospital environment reflecting
realistic operational conditions. Comprehensive testing is conducted to evaluate the robustness
of post-quantum cryptographic modules, differential privacy mechanisms, and attribute-based
encryption policies across diverse clinical workflows [10]. Continuous monitoring is employed
to collect performance metrics and user interaction data, enabling iterative refinement of
system parameters [34]. Special emphasis is placed on evaluating real-time responsiveness and
ensuring that cryptographic and policy enforcement overheads remain within clinically
acceptable latency thresholds [15]. Experimental results from this phase demonstrate the
system’s reliability and operational feasibility in real-time healthcare scenarios [2].

6. EVALUATION METHODOLOGY

This section outlines the comprehensive evaluation framework used to assess the
proposed platform’s security, performance, and practical utility. The evaluation combines
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theoretical cryptographic analysis with extensive empirical testing using realistic datasets and
simulated hospital workloads, ensuring robust and reproducible results [32], [40], [12].

6.1 Privacy Evaluation

The privacy evaluation assesses the effectiveness of differential privacy mechanisms in
mitigating re-identification risks while preserving analytical utility [41]. Trade-offs between
privacy budgets and query accuracy are quantified, and the effectiveness of attribute-based
encryption in enforcing fine-grained access control is rigorously validated [42], [43].

Privacy Budget vs Query Accuracy

Privacy Budget vs Re-Identification Risk

Query Accuracy (%)
Re-Identification Risk (%)

70

02 04 06 08 10 02 04 06 08 10
Privacy Budget (g) Privacy Budget (g)
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The adaptability of privacy policies under dynamic clinical contexts is analyzed to
ensure confidentiality is preserved without impeding urgent care [11]. Statistical significance
testing (o = 0.05) and power analysis (B = 0.80) are employed to ensure robustness of findings
[12]. Threat modelling and attack simulations are conducted to evaluate resistance against
inference and linkage attacks, alongside compliance assessment with healthcare data protection
regulations [33], [44], [45].

6.2 Performance Evaluation

Performance evaluation focuses on measuring system responsiveness and throughput
under varying operational loads. Metrics such as encryption and decryption latency, policy
enforcement delay, transaction processing time, and query execution speed are recorded, with
particular attention to overhead introduced by post-quantum cryptography and dynamic access
control.

o Encryption and Decryption Latency Comparison

—e— Encryption Context-Aware Policy Enforcement Delay
654 —#— Decryption

= = = =
o I} I 3
o o S o

Latency (ms)

Policy Enforcement Delay (ms)
o ®
3 o

'S
3

N
1)

RSA-2048 ECC-256 Post-Quantum
Cryptographic Scheme 0

Routine OPD Icu Emergency
Clinical Context

Fig. 7 Encryption & Decryption
Latency Comparison Fig. 8 Policy Enforcement Delay Under Clinical Contexts
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System Throughput vs Concurrent Users
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Scalability experiments assess the system’s ability to support increasing user populations and
data volumes without significant degradation, ensuring feasibility for large-scale healthcare
deployments [12], [16], [17].

6.3 Utility Evaluation

Utility evaluation examines the platform’s effectiveness in supporting clinical decision-
making and secondary data usage. The availability, completeness, and timeliness of data for
authorized users are assessed, along with the accuracy of insights derived from privacy-
protected datasets.

Data Availability for Authorized Users Data Completeness vs Privacy Level
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Fig. 12 Data availability for authorized users Fig. 13 Data
Completeness Under Privacy Protection
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This evaluation verifies that differential privacy preserves essential statistical properties while
attribute-based controls prevent unnecessary exposure of sensitive information [12], [15].
6.4 Sustainability and Longevity Evaluation

This evaluation will project the system's long-term viability against evolving threats,
including advances in quantum computing, and assess its adaptability to future regulatory
changes and technological shifts over a 30—50-year horizon.
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This includes an analysis of cryptographic agility, examining the ease with which new post-
quantum cryptographic primitives can be integrated as they mature and become standardized,
without requiring a complete system overhaul. Furthermore, the evaluation will consider the
system's modularity and interoperability with emerging healthcare technologies and data
standards, critical for sustaining its relevance and functionality over several decades.
6.5 Comparative Evaluation

This section will juxtapose the proposed system against existing state-of-the-art EHR
platforms and privacy-preserving techniques, highlighting its novel contributions in quantum
resilience, dynamic privacy adaptation, and fine-grained access control [46]. This comparison
will employ both quantitative metrics, such as performance benchmarks and security analyses,
and qualitative assessments of architectural flexibility and policy enforcement capabilities.
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The analysis will specifically emphasize how the proposed system surpasses current
solutions in terms of long-term cryptographic security and its ability to maintain privacy
guarantees across evolving clinical contexts [42]. This comparative analysis will also consider
the integration of distributed ledger technologies, such as blockchain, for enhanced
transparency and secure sharing of medical records, as some existing frameworks have
explored partitioning EHR data for performance gains [47], [48]. Additionally, the comparative
evaluation will analyze the efficiency of encryption and decryption processes for large EHR
datasets, particularly those containing extensive imaging files, to demonstrate superior
performance [38].

7. KEY CONTRIBUTIONS

The proposed platform distinguishes itself through its multi-layered privacy
framework, which integrates quantum-resistant cryptography with context-aware access
policies to address the unique challenges of long-term EHR data retention and dynamic clinical
environments. This innovative approach ensures robust data confidentiality against future
quantum threats while providing the adaptability required for real-time clinical operations and
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diverse research applications [1], [49]. Specifically, it pioneers a system capable of field-level
encryption, moving beyond the coarse-grained access controls prevalent in current EHR
systems [42]. Furthermore, the system's ability to provide measurable privacy-utility-
performance trade-offs allows healthcare providers to optimize data access based on specific
operational needs without compromising security or regulatory compliance [12].

8. CONCLUSION AND FUTURE WORK

The platform also incorporates a hybrid signature system, combining ECDSA (Elliptic
Curve Digital Signature Algorithm) and Dilithium, to fortify defenses against quantum attacks
and enhance security and flexibility [2]. This integration of quantum-enhanced blockchain
technology significantly improves the confidentiality, integrity, and availability of sensitive
healthcare data [2], [8]. Future work will involve real-world deployment and extensive
evaluation within a hospital setting to validate its practical utility, scalability, and impact on
clinical workflows. Further research will investigate the integration of homomorphic
encryption or secure multi-party computation to enable privacy-preserving computations over
encrypted EHR data, addressing challenges related to cross-border data sharing and diverse
data modalities like genomic and IoT sensor data [12]. Additionally, exploration into
blockchain sharding and sidechains could further enhance scalability and transaction
processing capacity, particularly for managing large volumes of patient data efficiently [50].
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